
AAV vector system (AAV expression system, AAV packaging plasmid system)


AAV vector system (AAV expression system, AAV packaging plasmid system)-Introduction
GeneMedi's AAV Vector System, also named AAV expression system or AAV packaging plasmid system, is powerful tool for in-vivo gene delivery, gene editing and gene therapy. You can easily produce recombinant AAV (rAAV) paticle in 293T cell line in high titer using GeneMedi's AAV Vector System. The Genemedi AAV vector system including multiple AAV expression vector plasmids, AAV helper plasmid and the serotypes-specific AAV Rep-Cap plamids.
GeneMedi's AAV expression vectors have been inserted with differernt expression cassettes, containing kinds of verified protomters and reporters including GFP, zsgreen, RFP, mcherry and luciferase. The GeneMedi's AAV expression vectors have been proved very suitalble for unique gene overexpression or shRNA-mediated knock-down (also called RNAi (RNA interference ). You can also achieve gene knock-out(KO) or gene editing using our Crispr-cas9-gRNA AAV expression vector.
The serotypes-specific AAV Rep-Cap plamid (AAV-RC plasmid, or called AAV-RC plasmid) contain the AAV2-Rep gene with different serotypes of AAV's Cap gene(also called AAV capsids gene).
GeneMedi's AAV Rep-Cap plasmids is including AAV2, AAV5, AAV6, AAV8, AAV9, AAV-PHP.B, AAV-PHP.eB, AAV PHP.s, AAV-Retro (Retrograde), AAV-Anc80 (L65), AAV-DJ, AAV-DJ8. GeneMedi also supplies capsid optimized AAV variant including AAV2 variant(Y444F), AAV2 variant (Y272F, Y444F, Y500F, Y730F), AAV2 variant (Y444F, Y730F, Y500F, Y272F, Y704F, Y252F), AAV2.7m8, AAV8-1m, AAV8-2m, AAV8-3m and some other engineering AAV serotypes not mentioned.
If you want to obtain higher quantities of plasmids (mg), please visit GM TransExcellent Plasmid DNA Rapid Preparation Service.
AAV(Adeno-Associated Virus) vector system
AAV Rep-Cap plasmids (serotypes-specific AAV RC plasmids)
AAV(Adeno Associated Virus) Expression Vector (AAV expression plasmids)
Note: Industry R&D excludes CRO&CDMO&CXO; Others includes CRO&CDMO&CXO&CMC&Manufacturing company
Cat.No | Expression | Name of Vectors | Promoter | Reporter | Cre-dependent | TAG (unfusion) | Price | Order |
P-AAVV-B01 | overexpression | pGMAAV-CMV-MCS-T2A-ZsGreen | CMV | ZsGreen | No | null | Academic: 935 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B02 | overexpression | pGMAAV-CMV-MCS-3flag-P2A-Zsgreen | CMV | ZsGreen | No | 3FLAG(C-terminal) | Academic: 935 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B03 | overexpression | pGMAAV-CMV-MCS-3flag-EF1-ZsGreen | CMV | ZsGreen | No | 3FLAG(C-terminal) | Academic: 935 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B04 | overexpression | pGMAAV-CAG-MCS-T2A-ZsGreen | CAG | ZsGreen | No | null | Academic: 935 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B05 | overexpression | pGMAAV-CAG-MCS-3flag-T2A-ZsGreen | CAG | ZsGreen | No | 3FLAG(C-terminal) | Academic: 935 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B06 | overexpression | pGMAAV-CAG-MCS-T2A-mCherry | CAG | mCherry | No | null | Academic: 935 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B07 | overexpression | pGMAAV-CAG-DIO-MCS-T2A-ZsGreen | CAG | ZsGreen | Yes | null | Academic: 1679 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B08 | overexpression | pGMAAV-CAG-DIO-MCS-T2A-mCherry | CAG | mCherry | Yes | null | Academic: 1679 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B09 | overexpression | pGMAAV-CMV-DIO-MCS-T2A-ZsGreen | CMV | ZsGreen | Yes | null | Academic: 1679 Industry R&D: Inquiry Others:Inquiry | ![]() |
P-AAVV-B10 | overexpression | pGMAAV-hSyn-DIO-MCS-ZsGreen | hSyn | ZsGreen | Yes | null | Academic: 2039 Industry R&D: Inquiry Others:Inquiry | ![]() |
>>Click to check the other 75 AAV Expression Vector in the total AAV Expression Vector list
AAV Helper plasmid
Map and sequence of AAV Helper Plasmid

Click here to download SnapGene Viewer
Reference
1.
Li C, W Sun, C Gu, Z Yang, N Quan, J Yang, Z Shi, L Yu and H Ma. (2018). Targeting ALDH2 for Therapeutic Interventions in Chronic Pain-Related Myocardial Ischemic Susceptibility. Theranostics 8:1027-1041.
2.
Yuan Y, Y Zheng, X Zhang, Y Chen, X Wu, J Wu, Z Shen, L Jiang, L Wang, W Yang, J Luo, Z Qin, W Hu and Z Chen. (2017). BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 13:1754-1766.
3.
Li S, X Dou, H Ning, Q Song, W Wei, X Zhang, C Shen, J Li, C Sun and Z Song. (2017). Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 66:936-952.
4.
Li L, B Li, M Li, C Niu, G Wang, T Li, E Krol, W Jin and JR Speakman. (2017). Brown adipocytes can display a mammary basal myoepithelial cell phenotype in vivo. Mol Metab 6:1198-1211.
5.
Feng D, B Wang, L Wang, N Abraham, K Tao, L Huang, W Shi, Y Dong and Y Qu. (2017). Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J Pineal Res 62.
6.
Du X, H Hao, Y Yang, S Huang, C Wang, S Gigout, R Ramli, X Li, E Jaworska, I Edwards, J Deuchars, Y Yanagawa, J Qi, B Guan, DB Jaffe, H Zhang and N Gamper. (2017). Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission. J Clin Invest 127:1741-1756.
7.
Yang H, J Yang, W Xi, S Hao, B Luo, X He, L Zhu, H Lou, YQ Yu, F Xu, S Duan and H Wang. (2016). Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear. Nat Neurosci 19:283-9.
8.
Wu X, X Wu, Y Ma, F Shao, Y Tan, T Tan, L Gu, Y Zhou, B Sun, Y Sun, X Wu and Q Xu. (2016). CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun 7:13498.
9.
Wei Y, Y Chen, Y Qiu, H Zhao, G Liu, Y Zhang, Q Meng, G Wu, Y Chen, X Cai, H Wang, H Ying, B Zhou, M Liu, D Li and Q Ding. (2016). Prevention of Muscle Wasting by CRISPR/Cas9-mediated Disruption of Myostatin In vivo. Mol Ther 24:1889-1891.
10.
Zhang X, Y Yuan, L Jiang, J Zhang, J Gao, Z Shen, Y Zheng, T Deng, H Yan, W Li, WW Hou, J Lu, Y Shen, H Dai, WW Hu, Z Zhang and Z Chen. (2014). Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy. Autophagy 10:1801-13.